A Practitioner’s Framework for Federated Model Validation Resource Allocation

Recent advances in computation and statistics led to an increasing use of federated models for end-to-end system test and evaluation. A federated model is a collection of interconnected models where the outputs of a model act as inputs to subsequent models. However, the process of verifying and validating federated models is poorly understood, especially when testers have limited resources, knowledge-based uncertainties, and concerns over operational realism. Testers often struggle with determining how to best allocate limited test resources for model validation....

2024 · Dhruv Patel, Jo Anna Capp, John Haman

Simulation Insights on Power Analysis with Binary Responses--from SNR Methods to 'skprJMP'

Logistic regression is a commonly-used method for analyzing tests with probabilistic responses in the test community, yet calculating power for these tests has historically been challenging. This difficulty prompted the development of methods based on signal-to-noise ratio (SNR) approximations over the last decade, tailored to address the intricacies of logistic regression’s binary outcomes. However, advancements and improvements in statistical software and computational power have reduced the need for such approximate methods....

2024 · Tyler Morgan-Wall, Robert Atkins, Curtis Miller

Comparing Normal and Binary D-Optimal Designs by Statistical Power

In many Department of Defense test and evaluation applications, binary response variables are unavoidable. Many have considered D-optimal design of experiments for generalized linear models. However, little consideration has been given to assessing how these new designs perform in terms of statistical power for a given hypothesis test. Monte Carlo simulations and exact power calculations suggest that D optimal designs generally yield higher power than binary D-optimal designs, despite using logistic regression in the analysis after data have been collected....

2023 · Addison Adams

Framework for Operational Test Design- An Example Application of Design Thinking

This poster provides an example of how a design thinking framework can facilitate operational test design. Design thinking is a problem-solving approach of interest to many groups including those in the test and evaluation community. Design thinking promotes the principles of human-centeredness, iteration, and diversity and it can be accomplished via a five-phased approach. Following this approach, designers create innovated product solutions by (l) conducting research to empathize with their users, (2) defining specific user problems, (3) ideating on solutions that address the defined problems, (4) prototyping the product, and (5) testing the prototype....

2023 · Miriam Armstrong

Introduction to Design of Experiments for Testers

This training provides details regarding the use of design of experiments, from choosing proper response variables, to identifying factors that could affect such responses, to determining the amount of data necessary to collect. The training also explains the benefits of using a Design of Experiments approach to testing and provides an overview of commonly used designs (e.g., factorial, optimal, and space-filling). The briefing illustrates the concepts discussed using several case studies....

2023 · Breeana Anderson, Rebecca Medlin, John Haman, Kelly Avery, Keyla Pagan-Rivera

Statistical Methods Development Work for M&S Validation

We discuss four areas in which statistically rigorous methods contribute to modeling and simulation validation studies. These areas are statistical risk analysis, space-filling experimental designs, metamodel construction, and statistical validation. Taken together, these areas implement DOT&E guidance on model validation. In each area, IDA has contributed either research methods, user-friendly tools, or both. We point to our tools on testscience.org, and survey the research methods that we’ve contributed to the M&S validation literature...

2023 · Curtis Miller

A Review of Sequential Analysis

Sequential analysis concerns statistical evaluation in situations in which the number, pattern, or composition of the data is not determined at the start of the investigation, but instead depends upon the information acquired throughout the course of the investigation. Expanding the use of sequential analysis has the potential to save resources and reduce test time (National Research Council, 1998). This paper summarizes the literature on sequential analysis and offers fundamental information for providing recommendations for its use in DoD test and evaluation....

2020 · Rebecca Medlin, John Dennis, Keyla Pagan-Rivera, Leonard Wilkins, Heather Wojton

Sample Size Determination Methods Using Acceptance Sampling by Variables

Acceptance Sampling by Variables (ASbV) is a statistical testing technique used in Personal Protective Equipment programs to determine the quality of the equipment in First Article and Lot Acceptance Tests. This article intends to remedy the lack of existing references that discuss the similarities between ASbV and certain techniques used in different sub-disciplines within statistics. Understanding ASbV from a statistical perspective allows testers to create customized test plans, beyond what is available in MIL-STD-414....

2019 · Thomas Johnson, Lindsey Butler, Kerry Walzl, Heather Wojton

Comparing M&S Output to Live Test Data- A Missile System Case Study

In the operational testing of DoD weapons systems, modeling and simulation (M&S) is often used to supplement live test data in order to support a more complete and rigorous evaluation. Before the output of the M&S is included in reports to decision makers, it must first be thoroughly verified and validated to show that it adequately represents the real world for the purposes of the intended use. Part of the validation process should include a statistical comparison of live data to M&S output....

2018 · Kelly Avery

JEDIS Briefing and Tutorial

Are you sick of having to manually iterate your way through sizing your design of experiments? Come learn about JEDIS, the new IDA-developed JMP Add-In for automating design of experiments power calculations. JEDIS builds multiple test designs in JMP over user-specified ranges of sample sizes, Signal-to-Noise Ratios (SNR), and alpha (1 -confidence) levels. It then automatically calculates the statistical power to detect an effect due to each factor and any specified interactions for each design....

2018 · Jason Sheldon

Testing Defense Systems

The complex, multifunctional nature of defense systems, along with the wide variety of system types, demands a structured but flexible analytical process for testing systems. This chapter summarizes commonly used techniques in defense system testing and specific challenges imposed by the nature of defense system testing. It highlights the core statistical methodologies that have proven useful in testing defense systems. Case studies illustrate the value of using statistical techniques in the design of tests and analysis of the resulting data....

2018 · Justace Clutter, Thomas Johnson, Matthew Avery, V. Bram Lillard, Laura Freeman

Statistical Methods for Defense Testing

In the increasingly complex and data‐limited world of military defense testing, statisticians play a valuable role in many applications. Before the DoD acquires any major new capability, that system must undergo realistic testing in its intended environment with military users. Although the typical test environment is highly variable and factors are often uncontrolled, design of experiments techniques can add objectivity, efficiency, and rigor to the process of test planning. Statistical analyses help system evaluators get the most information out of limited data sets....

2017 · Dean Thomas, Kelly Avery, Laura Freeman, Matthew Avery

Tutorial on Sensitivity Testing in Live Fire Test and Evaluation

A sensitivity experiment is a special type of experimental design that is used when the response variable is binary and the covariate is continuous. Armor protection and projectile lethality tests often use sensitivity experiments to characterize a projectile’s probability of penetrating the armor. In this mini-tutorial we illustrate the challenge of modeling a binary response with a limited sample size, and show how sensitivity experiments can mitigate this problem. We review eight different single covariate sensitivity experiments and present a comparison of these designs using simulation....

2016 · Laura Freeman, Thomas Johnson, Raymond Chen

Surveys in Operational Test and Evaluation

Recently DOT&E signed out a memo providing Guidance on the Use and Design of Surveys in Operational Test and Evaluation. This guidance memo helps the Human Systems Integration (HSI) community to ensure that useful and accurate HSI data are collected. Information about how HSI experts can leverage the guidance is presented. Specifically, the presentation will cover which HSI metrics can and cannot be answered by surveys. Suggested Citation Grier, Rebecca A, and Laura Freeman....

2015 · Rebecca Grier, Laura Freeman