Comparing Normal and Binary D-Optimal Designs by Statistical Power
In many Department of Defense test and evaluation applications, binary response variables are unavoidable. Many have considered D-optimal design of experiments for generalized linear models. However, little consideration has been given to assessing how these new designs perform in terms of statistical power for a given hypothesis test. Monte Carlo simulations and exact power calculations suggest that D optimal designs generally yield higher power than binary D-optimal designs, despite using logistic regression in the analysis after data have been collected....